Sains Malaysiana 53(10)(2024): 3465-3477
http://doi.org/10.17576/jsm-2024-5310-19
A lncRNA Transcriptome Analysis of
Phycocyanin-Treated Non-Small Cell Lung Cancer A549 Cell Lines
(Analisis Transkriptom lncRNA bagi Titisan Sel A549 Bukan Sel Kecil Kanser
Paru-Paru yang Dirawat Fikosianin)
BOXIONG
WU, HAOZHE CHENG, XINRAN LI, WENJING ZHANG, QIANCHENG LI & SHUAI HAO*
Key
Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business
University), Ministry of Education, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and
Business University, Beijing, 100048, China
Diserahkan: 16 April 2024/Diterima:
14 Ogos 2024
Abstract
Phycocyanin is a type
of marine food additive with multiple biological properties, including anticancer activity, but
its underlying antineoplastic mechanism in non-small cell lung cancer (NSCLC)
remains unclear. To investigate the underlying regulatory mechanism of
phycocyanin in NSCLC, a lncRNA microarray analysis was performed using a phycocyanin-treated
A549 cell model. The classification and expression of lncRNAs were determined. The profiles of differentially expressed lncRNAs were generated and analyzed using Kyoto Encyclopedia of Genes and Genomes
(KEGG) and Gene Ontology (GO) analyses. The results showed that 193 lncRNAs were upregulated and 116 lncRNAs were downregulated in the phycocyanin-treated group compared with the control group, and qRT‒PCR analysis confirmed the expression of selected lncRNAs. Bioinformatic analysis indicated that the
differentially expressed lncRNAs and their target
genes were enriched in the extracellular region, epithelium development, NOD-like receptor pathway, Notch
signaling, and apoptosis process. In addition, coexpression network analysis identified 2,238
lncRNA‒mRNA, lncRNA‒lncRNA, and mRNA‒mRNA pairs. In particular, 72 etc. differentially expressed lncRNA target genes were discovered in the
interaction network, which provides insights into the potential mechanism of
phycocyanin in A549 cells. Moreover, cell phenotype experiments showed that
downregulating the expression of lncRNA ENST00000538717, a lncRNA that is
downregulated after phycocyanin treatment, could significantly inhibit the
migration and viability of A549 and H460 cells. In conclusion, this study lays
a theoretical and potential foundation for NSCLC treatment and advances our
understanding of the regulatory mechanisms of phycocyanin.
Keywords: A549 cells; anticancer;
lncRNA; non-small cell lung cancer (NSCLC); phycocyanin
Abstrak
Fikosianin ialah sejenis bahan tambahan makanan laut dengan pelbagai sifat biologi, termasuk aktiviti antikanser, tetapi mekanisme antineoplastik asasnya dalam kanser paru-paru bukan-sel kecil (NSCLC) masih tidak jelas. Untuk mengkaji mekanisme pengawalseliaan asas fikosianin dalam NSCLC, analisis tatasusunan mikro lncRNA dilakukan menggunakan model sel A549 yang dirawat fikosianin. Pengelasan dan pengekspresan lncRNA telah ditentukan. Profil lncRNA yang dinyatakan secara berbeza dijana dan dianalisis menggunakan analisis Kyoto
Encyclopedia of Genes and Genom (KEGG) dan Gene
Ontology (GO). Keputusan menunjukkan bahawa 193 lncRNA telah dikawal dan 116 lncRNA telah dikurangkan dalam kumpulan yang dirawat fikosianin berbanding dengan kumpulan kawalan dan analisis qRT‒PCR mengesahkan ekspresi lncRNA terpilih. Analisis bioinformatik menunjukkan bahawa lncRNA yang dinyatakan secara berbeza dan gen sasarannya diperkaya di kawasan ekstrasel, pembangunan epitelium, laluan reseptor seperti NOD, isyarat Notch dan proses apoptosis. Di samping itu, analisis rangkaian ekspresi bersama mengenal pasti 2,238 pasangan lncRNA‒mRNA, lncRNA‒lncRNA dan mRNA‒mRNA. Khususnya,
72 dsb. gen sasaran lncRNA
yang dinyatakan secara berbeza ditemui dalam rangkaian interaksi yang memberikan gambaran tentang mekanisme potensi fikosianin dalam sel A549. Selain itu, kajian fenotip sel menunjukkan bahawa perencatan pengawalaturan ekspresi lncRNA
ENST00000538717, lncRNA yang mengalami perencatan pengawalaturan selepas rawatan fikosianin, boleh menghalang penghijrahan dan keviabelan sel A549 dan H460 dengan ketara. Kesimpulannya, kajian ini meletakkan asas teori dan potensi rawatan NSCLC dan meningkatkan pemahaman kita tentang mekanisme pengawalseliaan oleh fikosianin.
Kata kunci: Antikanser; fikosianin; lncRNA; kanser paru-paru bukan-sel kecil (NSCLC); sel A549
RUJUKAN
Alzokaky, A.A.M., Abdelkader, E.M., El-Dessouki, A.M., Khaleel, S.A. & Raslan, N.A. 2020.
C-phycocyanin protects against ethanol-induced gastric ulcers in rats: Role of
HMGB1/NLRP3/NF-kappa B pathway. Basic
& Clinical Pharmacology & Toxicology 127(4): 265-277.
https://doi.org/10.1111/bcpt.13415
Bridges, M.C., Daulagala, A.C. &
Kourtidis, A. 2021. LNCcation: lncRNA localization
and function. Journal of Cell Biology 220(2): e202009045. https://doi.org/10.1083/jcb.202009045
Cai, G., Sun, M., Li, X. & Zhu, J. 2021. Construction and
characterization of rectal cancer-related lncRNA-mRNA ceRNA network reveals prognostic biomarkers in rectal cancer. Iet Systems Biology 15(6): 192-204.
https://doi.org/10.1049/syb2.12035
Chen, L., Zou, W., Zhang, L., Shi, H., Li, Z. & Ni, C. 2021. ceRNA network development and tumor-infiltrating immune
cell analysis in hepatocellular carcinoma. Medical
Oncology 38(7): 85. https://doi.org/10.1007/s12032-021-01534-6
Corley, S.M., Troy, N.M., Bosco, A. & Wilkins, M.R. 2019. QuantSeq. 3' sequencing combined with Salmon provides a
fast, reliable approach for high throughput RNA expression analysis. Sci.
Rep. 9(1): 18895. https://doi.org/10.1038/s41598-019-55434-x
Ettinger, D.S., Wood, D.E., Akerley, W., Bazhenova, L.A., Borghaei, H., Camidge, D.R., Cheney, R.T., Chirieac, L.R., D'Amico, T.A., Dilling, T.J., Dobelbower,
M.C., Govindan, R., Hennon, M., Horn, L., Jahan, T.M., Komaki, R., Lackner,
R.P., Lanuti, M., Lilenbaum,
R., Lin, J., Loo Jr., B.W., Martins, R., Otterson, G.A., Patel, J.D., Pisters,
K.M., Reckamp, K., Riely, G.J., Schild, S.E., Shapiro, T.A., Sharma, N.,
Stevenson, J., Swanson, S.J., Tauer, K., Yang, S.C., Gregory, K. & Hughes,
M. 2016. NCCN Guidelines (R) Insights: Non-small cell lung cancer, Version
4.2016 featured updates to the NCCN guidelines. Journal of the National Comprehensive Cancer Network 14(3):
255-264. https://doi.org/10.6004/jnccn.2016.0031
Guo, K., Qian, K., Shi, Y., Sun, T. & Wang, Z. 2021. LncRNA-MIAT
promotes thyroid cancer progression and function as ceRNA to target EZH2 by sponging miR-150-5p. Cell
Death & Disease 12: 1097. https://doi.org/10.1038/s41419-021-04386-0
Guo, T., Li, J., Zhang, L., Hou, W., Wang, R., Zhang, J. & Gao, P.
2019. Multidimensional communication of microRNAs and long non-coding RNAs in
lung cancer. Journal of Cancer Research
and Clinical Oncology 145(1): 31-48.
https://doi.org/10.1007/s00432-018-2767-5
Hao, S., Li, F., Li, S., Li, Q., Liu, Y., Yang, Q., Ye, X. & Wang,
C. 2022. miR-3150a-3p, miR-6883-3p and miR-627-5p participate in the
phycocyanin-mediated growth diminishment of A549 cells, via regulating a common
target toll/interleukin 1 receptor domain-containing adaptor protein. Journal of Functional Foods 91: 105011.
https://doi.org/10.1016/j.jff.2022.105011
Hao, S., Yang, Q., Li, F., Li, Q., Liu, Y., Li, S., Zhao, L. & Wang,
C. 2021. Dysregulated expression of miR-642a-5p and its target
receptor-interacting serine/threonine-protein kinase 1 contribute to the phycocyanin-mediated inhibitory function on non-small cell lung cancer. Journal of Functional Foods 85: 104654.
https://doi.org/10.1016/j.jff.2021.104654
Hao, S., Li, S., Wang, J., Zhao, L., Yan, Y., Cao, Q., Wu, T.T., Liu,
L.Y. & Wang, C.T. 2018. Transcriptome analysis of phycocyanin-mediated
inhibitory functions on non-small cell lung cancer A549 cell growth. Marine Drugs 16(12): 511.
https://doi.org/10.3390/md16120511
Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R. &
Salzberg, S-L. 2013. TopHat2: Accurate alignment of transcriptomes in the
presence of insertions, deletions and gene fusions. Genome Biol. 14(4):
R36. http://genomebiology.com/2013/14/4/R36
Huang, J.W., Luo, X.Y., Li, Z.H. & Lang, B.P. 2020. LncRNA NNT-AS1
regulates the progression of lung cancer through the NNT-AS1/miR-3666/E2F2
axis. European Review for Medical and
Pharmacological Sciences 24(1): 238-248.
https://doi.org/10.26355/eurrev_202001_19916
Khandelwal, A., Bacolla, A., Vasquez, K.M.
& Jain, A. 2015. Long non-coding RNA: A new paradigm for lung cancer. Molecular Carcinogenesis 54(11):
1235-1251. https://doi.org/10.1002/mc.22362
Li, B., Gao, M-H., Chu, X-M., Teng, L., Lv,
C-Y., Yang, P. & Yin, Q-F. 2015. The synergistic antitumor effects of
all-trans retinoic acid and C-phycocyanin on the lung cancer A549 cells in
vitro and in vivo. European
Journal of Pharmacology 749: 107-114.
https://doi.org/10.1016/j.ejphar.2015.01.009
Li, B., Gao, M-H., Lv, C-Y., Yang, P. &
Yin, Q-F. 2016. Study of the synergistic effects of all-transretinoic acid and C-phycocyanin on the growth and apoptosis of A549 cells. European Journal of Cancer Prevention 25(2): 97-101. https://doi.org/10.1097/cej.0000000000000157
Liu, Q., Huang, Y., Zhang, R., Cai, T. & Cai, Y. 2016. Medical application of Spirulina platensis derived
C-phycocyanin. Evidence-Based
Complementary and Alternative Medicine 2016: 7803846.
https://doi.org/10.1155/2016/7803846
Loewen, G., Jayawickramarajah, J., Zhuo, Y.
& Shan, B. 2014. Functions of lncRNA HOTAIR in lung cancer. Journal of Hematology & Oncology 7:
90. https://doi.org/10.1186/s13045-014-0090-4
Luo, D.B., Lv, H.B., Sun, X.H., Wang, Y., Chu,
J.H. & Salai, A.L. 2020. LncRNA TRERNA1 promotes malignant progression of
NSCLC through targeting FOXL1. European
Review for Medical and Pharmacological Sciences 24(3): 1233-1242.
https://doi.org/10.26355/eurrev_202002_20176
Mansoori, B., Mohammadi, A., Davudian, S., Shirjang, S. & Baradaran, B. 2017. The different
mechanisms of cancer drug resistance: A brief review. Advanced Pharmaceutical Bulletin 7(3): 339-348.
https://doi.org/10.15171/apb.2017.041
Marcela Herrera-Solorio, A., Peralta-Arrieta, I., Armas Lopez, L.,
Hernandez-Cigala, N., Mendoza Milla, C., Ortiz Quintero, B., Catalan Cardenas,
R., Pineda Villegas, P., Rodriguez Villanueva, E., Trejo Iriarte, C.G., Zuniga,
J., Arrieta, O. & Avila-Moreno, F. 2021. LncRNA SOX2-OT regulates AKT/ERK
and SOX2/GLI-1 expression, hinders therapy, and worsens clinical prognosis in
malignant lung diseases. Molecular
Oncology 15(4): 1110-1129. https://doi.org/10.1002/1878-0261.12875
Molina, J.R., Yang, P.G., Cassivi, S.D.,
Schild, S.E. & Adjei, A.A. 2008. Non-small cell lung cancer: Epidemiology,
risk factors, treatment, and survivorship. Mayo
Clinic Proceedings 83(5): 584-594. https://doi.org/10.4065/83.5.584
Morgenstern, D., Barzilay, R. & Levin, Y. 2021. RawBeans:
A simple, vendor-independent, raw-data quality-control tool. J. Proteome
Res. 20(4): 2098-2104. https://dx.doi.org/10.1021/acs.jproteome.0c00956
Nian, Y., Hu, X., Zhang, R., Feng, J., Du, J., Li, F., Bu, L., Zhang,
Y., Chen, Y. & Tao, C. 2022. Mining on Alzheimer's diseases related
knowledge graph to identity potential AD-related semantic triples for drug
repurposing. BMC Bioinformatics 23(Suppl 6): 407.
https://doi.org/10.1186/s12859-022-04934-1
Novikova, I.V., Hennelly, S.P. & Sanbonmatsu,
K.Y. 2013. Tackling structures of long noncoding RNAs. International Journal of Molecular Sciences 14(12): 23672-23684.
https://doi.org/10.3390/ijms141223672
Qi, X., Zhang, D-H., Wu, N., Xiao, J-H., Wang, X. & Ma, W. 2015. ceRNA in cancer: Possible functions and clinical
implications. Journal of Medical Genetics 52(10): 710-718. https://doi.org/10.1136/jmedgenet-2015-103334
Ransohoff, J.D., Wei, Y. & Khavari, P.A. 2018. The
functions and unique features of long intergenic non-coding RNA. Nature Reviews Molecular Cell Biology 19(3): 143-157. https://doi.org/10.1038/nrm.2017.104
Ren, C., Deng, M., Fan, Y., Yang, H., Zhang, G., Feng, X., Li, F., Wang,
D., Wang, F. & Zhang, Y. 2017. Genome-wide analysis reveals extensive
changes in LncRNAs during skeletal muscle development
in Hu sheep. Genes 8(8): 191.
https://doi.org/10.3390/genes8080191
Rezansoff, A.M., Laing, R., Martinelli, A., Stasiuk,
S., Redman, E., Bartley, D., Holroyd, N., Devaney, E., Sargison, N.D., Doyle,
S., Cotton, J.A. & Gilleard, J.S. 2019. The
confounding effects of high genetic diversity on the determination and
interpretation of differential gene expression analysis in the parasitic
nematode Haemonchus contortus. Int. J. Parasitol. 49(11): 847-858.
https://doi.org/10.1016/j.ijpara.2019.05.012
Sung, H., Ferlay, J., Siegel, R.L., Laversanne, M., Soerjomataram,
I., Jemal, A. & Bray, F. 2021. Global Cancer Statistics 2020: GLOBOCAN
estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians 71(3): 209-249. https://doi.org/10.3322/caac.21660
Taneja, S.B., Callahan, T.J., Paine, M.F., Kane-Gill, S.L., Kilicoglu, H., Joachimiak, M.P.
& Boyce, R.D. 2023. Developing a knowledge graph for pharmacokinetic
natural product-drug interactions. J. Biomed. Inform. 140: 104341. https://doi:
10.1016/j.jbi.2023.104341
Tuo, Z., Liang, L. & Zhou, R. 2021. LINC00852 is associated with
poor prognosis in non-small cell lung cancer patients and its inhibition
suppresses cancer cell proliferation and chemoresistance via the
hsa-miR-145-5p/KLF4 axis. Journal of Gene
Medicine 23(12): e3384. https://doi.org/10.1002/jgm.3384
Wan, Y., Yao, D., Fang, F., Wang, Y., Wu, G. & Qian, Y. 2021. LncRNA
WT1-AS downregulates lncRNA UCA1 to suppress non-small cell lung cancer and
predicts poor survival. BMC Cancer 21(1): 104. https://doi.org/10.1186/s12885-020-07767-4
Wu, X., Sui, Z., Zhang, H., Wang, Y. & Yu, Z. 2020. Integrated
analysis of lncRNA-mediated ceRNA network in lung
adenocarcinoma. Frontiers in Oncology 10: 554759. https://doi.org/10.3389/fonc.2020.554759
Yi, S., Li, G. & Sun, B. 2021. Overexpression of LINC00852 promotes
prostate cancer cell proliferation and metastasis. Asia-Pacific Journal of Clinical Oncology 17(6): 435-441.
https://doi.org/10.1111/ajco.13418
Zhang, G., Wang, Q., Zhang, X., Ding, Z. & Liu, R. 2019. LncRNA
FENDRR suppresses the progression of NSCLC via regulating miR-761/TIMP2 axis. Biomedicine & Pharmacotherapy 118:
109309. https://doi.org/10.1016/j.biopha.2019.109309
Zhang, X., Chen, Z., Zang, J., Yao, C., Shi, J., Nie, R. & Wu, G.
2021. LncRNA-mRNA co-expression analysis discovered the
diagnostic and prognostic biomarkers and potential therapeutic agents
for myocardial infarction. Aging-Us 13(6): 8944-8959.
Zhang, Y.X., Yuan, J., Gao, Z.M. & Zhang, Z.G. 2018. LncRNA TUC338
promotes invasion of lung cancer by activating MAPK pathway. European Review for Medical and
Pharmacological Sciences 22(2): 443-449.
Zhao, L., Zhang, X., Shi, Y. & Teng, T. 2020. LncRNA SNHG14
contributes to the progression of NSCLC through miR-206/G6PD pathway. Thoracic Cancer 11(5): 1202-1210.
https://doi.org/10.1111/1759-7714.13374
Zhen, Q., Gao, L-N., Wang, R-F., Chu, W-W., Zhang, Y-X., Zhao, X-J., Lv, B-L. & Liu, J-B. 2018. LncRNA DANCR promotes lung
cancer by sequestering miR-216a. Cancer
Control 25(1): 1073274818769849. https://doi.org/10.1177/1073274818769849
*Pengarang untuk surat-menyurat;
email: haoshuai@btbu.edu.cn
|